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This paper studies Minimum Spanning Trees under incomplete information assuming that it is only 

known that vertices belong to some neighborhoods that are second order cone representable and dis- 

tances are measured with a � q -norm. Two Mixed Integer Non Linear mathematical programming formu- 

lations are presented, based on alternative representations of subtour elimination constraints. A solu- 

tion scheme is also proposed, resulting from a reformulation suitable for a Benders-like decomposition, 

which is embedded within an exact branch-and-cut framework. Furthermore, a mathheuristic is devel- 

oped, which alternates in solving convex subproblems in different solution spaces, and is able to solve 

larger instances. The results of extensive computational experiments are reported and analyzed. 
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. Introduction 

Nowadays Combinatorial Optimization (CO) lies in the heart of

ultiple applications in the field of Operations Research. Many

uch applications can be formulated as optimization problems de-

ned on graphs where some particular structure is sought satisfy-

ng some optimality property. Traditionally this type of problems

ssumed implicitly the exact knowledge of all input elements, and,

n particular, of the precise position of vertices and edges. Never-

heless, this assumption does not always hold, as uncertainty, lack

f information, or some other factors may affect the relative po-

ition of the elements of the input graph. Hence, new tools are

equired to give adequate answers to these challenges, which have

een often ignored by standard CO tools. 

A matter that, in this context, has attracted the interest of re-

earchers over the last years is the solution of certain CO problems

hen the exact position of the vertices of the underlying graph is

ot known with certainty. If probabilistic information is available,

hen stochastic programming tools can be used, and optimiza-

ion over expected values carried out. Moreover, even under the

ssumption of incomplete information one could use a uniform

istribution and still apply such an approach. However, the use

f probabilistic information and allowing to consider all possible
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ocations for the vertices is not always suitable. For instance, when

 unique representative associated with each point of the input

raph must be determined. Scanning the related literature one can

nd papers applying both methodologies. Examples of stochastic

pproaches are for instance Bertsimas and Howell (1993) or Frank

1969) . Examples of the second type of approach arise in variants

f the traveling salesman problem (TSP), Minimum Spanning Tree

MST), or facility location problems that deal with demand regions

nstead of demand points (see Arkin and Hassin, 1994; Brimberg

nd Wesolowsky, 2002; Cooper, 1978; Dror, Efrat, Lubiw, and

itchell, 2003; Juel, 1981; Nickel, Puerto, and Rodríguez-Chía,

003; Yang, Lin, Xu, and Xie, 2007 , to mention just a few). 

A relevant common question raised by the latter class of prob-

ems is how to model and solve optimization problems on graphs

hen vertices are not points but regions in a given domain. The

bove mentioned case of the TSP, first introduced by Arkin and

assin (1994, 20 0 0) , has been addressed recently by a number

f authors. It generalizes the Euclidean TSP and the group Steiner

ree problem, and has applications in VLSI-design and other rout-

ng problems, in which there exist constraints on the position of

he vertices. Several inapproximability results and approximation

lgorithms have been developed for particular cases. The case of

he spanning tree problem with neighborhoods (MSTN) was first

ddressed by Yang et al. (2007) , who proved that the general case

f the problem in the plane is NP-hard (result also reproved by

öffler & van Kreveld, 2010 ), and gave several approximation algo-

ithms and a PTAS for the particular case of disjoint unit disks in

he plane. Some extensions considering the maximization of the

http://dx.doi.org/10.1016/j.ejor.2017.04.023
http://www.ScienceDirect.com
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able to be represented as a MINLP. 
weights are studied in Dorrigiv et al. (2013) . In particular, they

proved the non existence of FPTAS for MSTN, for general disjoint

disks, in the planar Euclidean case. Disser, Mihalák, Montanari, and

Widmayer (2014) consider the shortest path problem and the recti-

linear MSTN, and give some approximability results. To the best of

our knowledge, Gentilini, Margot, and Shimada (2013) are the first

authors to propose an exact Mixed Integer Non Linear Program-

ming (MINLP) formulation for the TSP with neighborhoods, but we

are not aware of any MINLP for the MSTN. 

Our goal in this paper is to develop MINLP formulations and

solution methods for the MSTN. We first present two MINLP for-

mulations that allow to solve medium size MSTN planar and 3D

Euclidean instances with up to 20 vertices, for neighborhoods of

varying radii using an on-the-shelf solver. Furthermore, we develop

an effective branch-and-cut strategy, based on a generalized Ben-

ders decomposition ( Benders, 1962; Geoffrion, 1972 ), and compare

its performance with that of the solver for the proposed formula-

tions. For this we present an alternative formulation for the MSTN,

in which the master problem consists of finding a MST with costs

derived from a continuous non linear (slave) subproblem, and we

develop the expression and separation of the cuts that are added

in the solution algorithm. Given that both the solver (for the two

MINLP formulations) and the exact branch-and-cut algorithm can

be too demanding, in terms of their computing times, we have

also developed an effective and efficient mathheuristic. The math-

heuristic stems from the observation that the subproblems defined

in the solution spaces of each of the two main sets of variables

are convex (so they can be solved very efficiently); it alternates in

solving subproblems in each of these solution spaces. 

The paper is organized as follows. Section 2 is devoted to intro-

duce the MSTN and to state a generic formulation. In Section 3 we

present and compare two MINLP formulations for the MSTN, based

on alternative representations of the spanning trees polytope.

Section 4 develops the exact branch-and-cut algorithm, based on

a Benders-like decomposition scheme: we define the master and

the non linear subproblem, and derive the cuts and their separa-

tion. In Section 4.1 we first compare the performance of the on-

the-shelf solver with the two MINLP formulations, and then we re-

port the numerical results obtained with the exact row-generation

algorithm. The mathheuristic is presented in Section 5 , where we

also give the numerical results that it produces. The paper ends

with some concluding remarks and our list of references. 

2. Minimum Spanning Trees with neighborhoods 

Let G = (V, E) be a connected undirected graph, whose vertices

are embedded in R 

d , i.e., v ∈ R 

d for all v ∈ V . Associated with each

vertex v ∈ V, let N v ⊆ R 

d denote a convex set containing v in its

interior. Let also ‖·‖ denote a given norm. 

Feasible solutions to the Minimum Spanning Tree with Neigh-

borhoods (MSTN) problem consist of a set of points, Y ∗ = { y v ∈
N v | v ∈ V } , together with a spanning tree T ∗ on the graph G 

∗ =
(Y ∗, E ∗) , with edge set E ∗ = {{ y v , y w 

} : { v , w } ∈ E} . Edge lengths are

given by the norm-based distance between the selected points rel-

ative to ‖·‖ , i.e.: 

d(y v , y w 

) = ‖ y v − y w 

‖ , for all { y v , y w 

} ∈ E ∗. 

The overall cost of ( Y ∗, T ∗) is therefore 

d(T ∗) = 

∑ 

e = { y v ,y w }∈ T ∗
d(y v , y w 

) . 

The MSTN is to find a feasible solution, ( Y ∗, T ∗), of minimum total

cost. 

Particular cases of the MSTN have been studied in the literature

for planar graphs. Disser et al. (2014) studied the case when the

sets N v are rectilinear neighborhoods centered at v ∈ V . Dorrigiv
t al. (2013) addressed the problem when the sets N v are disjoint

uclidean disks. Both referenced works study the complexity of the

onsidered problems but do not attempt to develop MINLP formu-

ations or solution methods for it. 

In this paper, we consider the general case where the graph G

s embedded in R 

d . Even if our developments can be extended to

eneric convex sets, we focus on the case where N v is second or-

er cone (SOC) representable ( Lobo, Vandenberghe, Boyd, & Lebret,

998 ). The main reason for this is that state-of-the-art solvers in-

orporate mixed integer non-linear implementations of SOC con-

traints. Such a modeling assumption could be readily overcome if

n-the-shelf solvers incorporated more general tools to deal with

onvex sets. 

Observe that SOC representable neighborhoods allow to model,

s a particular case, centered balls of a given radius r v , associated

ith the standard � p -norm with p ∈ [1, ∞ ] in R 

d , that we denote

y ‖·‖ p , i.e., neighborhoods in the form N v = { x ∈ R 

d : ‖ x − v ‖ p ≤
 v } , where 

 z‖ p = 

{ (∑ d 
k =1 | z k | p 

) 1 
p 

if p < ∞ 

max k ∈{ 1 , ... ,d} | z k | if p = ∞ 

. 

The reader is referred to Blanco, Puerto, and El-Haj Ben-Ali

2014) for further details on the SOC constraints that allow to rep-

esent (as intersections of second order cone and/or rotated second

rder cone constraints) such norm-based neighborhoods. Indeed,

e can also easily handle neighborhoods defined as bounded poly-

edra in R 

d , as well as intersections of polyhedra and balls. Hence,

ore sophisticated convex neighborhoods can be suitably repre-

ented or approximated using elements from the above mentioned

amilies of sets. 

Two extreme situations that can be modeled within our frame-

ork are the following. If the neighborhood for each vertex v ∈ V 

s the singleton N v = { v } , then MSTN becomes the classical MST

roblem with edge lengths given by the norm-based distances be-

ween each pair of vertices. On the other hand, if the considered

eighborhoods are big enough so that 
⋂ 

v ∈ V N v � = ∅ , then the prob-

em reduces to finding a degenerate one-vertex tree and the solu-

ion to the MSTN is that vertex with cost 0. 

Throughout this paper we use the following notation: 

• ST G as the set of incidence vectors associated with spanning

trees on G , i.e. ST G = { x ∈ R 

| E| 
+ : x is a spanning tree on G } . 

• Y = 

∏ 

v ∈ V N v , where N v is the neighborhood associated to ver-

tex v , which contains the possible sets of vertices for the span-

ning trees of MSTN. 

Then, the MSTN can be stated as: 

min 

∑ 

e ∈ E 
d(y v , y w 

) x e (MSTN)

.t. x ∈ ST G , y ∈ Y. 

Several observations follow from the formulation above: 

1. Fixing x ∈ ST G in MSTN results in a continuous SOC problem,

which is well-known to be convex ( Lobo et al., 1998 ). On the

other hand, fixing y ∈ Y results in a standard MST problem. It is

a well-known that MST admits continuous linear programming

representations ( Edmonds, 1970; Martin, 1991 ). Thus, MSTN can

be seen as a biconvex optimization problem, which is neither

convex nor concave ( Gorski, Pfeuffer, & Klamroth, 2007 ). 

2. Due to the expression of its objective function, (MSTN) is not

separable, even if each of its sets of variables x and y belong to

convex domains in different spaces. 

3. Since (MSTN) combines the above two subproblems, it is suit-
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Fig. 1. Data for Example 2.1 . 

Fig. 2. A MSTN for the data in Example 2.1 . 
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Fig. 3. A MSTN for the data in Example 2.1 for polyhedral neighborhoods. 
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optimality. Hence, e will appear in T . �
The following example illustrates the MSTN. 

xample 2.1. Let us consider a graph with eight vertices and 14

dges, G = (V, E) embedded in R 

2 . The graph G and an Euclidean

inimum Spanning Tree for this graph are shown in Fig. 1 (A). 

Fig. 1 (B) shows the input graph together with the neighbor-

oods N v associated with the vertices v ∈ V . The neighborhoods

re (Euclidean) balls centered at the original vertices, each of them

ith a different radius. Fig. 2 shows an optimal MSTN solution: the

ocation of the vertex selected in each neighborhood, as well as the

nal spanning tree (both in gray). 

Observe that the optimal spanning tree to the classical MST

roblem in the original input graph shown in Fig. 1 (A), with edge

engths given by the Euclidean distances between the initial ver-

ices, is no longer valid for the MSTN. The reason is that the actual

istances have been updated in order to consider the coordinates

f the selected vertices, which are unknown beforehand. Note also

hat the structure of the original graph is somehow broken, since

n the final solution some of the “initial” vertices are merged into

 single one (note that the MST in Fig. 2 has seven vertices while

he original graph had eight). This is possible only when some of

he neighborhoods have a non-empty intersection. 

In Fig. 3 we show an optimal solution to the MSTN in the same

nput graph, for a different definition of the neighborhoods. Now

hey are defined as boxes in the form N v = { z ∈ R 

2 : | z k − v k | ≤
 v , k = 1 , 2 } . 

As we see below, some of the properties of the standard MST

xtend to MSTN. In particular, the cut and cycle properties that al-

ow reducing the dimensionality of MSTN by discarding edges that

ill not appear in an optimal solution as well as computing those

dges that will appear in it. Before, we introduce the additional

otation associated with each edge e = { v , w } ∈ E. 
• ˜ U e and 

˜ u e respectively denote the maximum and minimum

distance between any pair of points in the neighborhoods of

the end-vertices of e . That is, ˜ U e = max { d(y v , y w 

) : y v ∈ N v , y w 

∈
N w 

} and 

˜ u e = min { d(y v , y w 

) : y v ∈ N v , y w 

∈ N w 

} . 
roperty 1. 

(a) Let C be a cycle of G = (V, E) and e ∈ C such that ˜ u e >

min e ′ ∈ E { ̃  U e ′ : e ′ ∈ C, e ′ � = e } . Then, e does not belong to a MSTN.

(b) Let S ⊂ V and (S, V \ S) = { e = { v , w } ∈ E | v ∈ S and w ∈ V \ S }
be its associated cutset. Let e = { v , w } ∈ (S, V \ S) be such that˜ U e < min e ′ ∈ E { ̃  u e ′ : e ′ = { v ′ , w 

′ } ∈ E, e ′ � = e, v ′ ∈ S, w 

′ ∈ V \ S} . 
Then, e belongs to every MSTN. 

roof. 

(a) Let C be a cycle of G = (V, E) and e ∈ C such that ˜ u e >

min e ∈ E { ̃  U e ′ : e ′ ∈ C, e ′ � = e } . 
Suppose, there is an MSTN of G , T with e ∈ T . Then, for any

other edge e ′ in the cycle C , the tree T ′ = T ∪ { e ′ }\{ e } satis-

fies that: 

d(T ′ ) ≤ d(T ) + ̃

 U e ′ − ˜ u e < d(T ) . 

Thus, the cost of T ′ is strictly smaller than the cost of T , con-

tradicting the optimality of T . Hence e will not appear in T . 

(b) Let T be a MSTN of G with e �∈ T . Since T is a tree, the unique

cycle of T ∪ { e } contains both e and the unique path in G con-

necting v and w, that does not contain e . Let e ′ the edge in

such a path crossing the cut, i.e., e ′ = { v ′ , w 

′ } with v ′ ∈ S and

w 

′ in V \ S . Then, T ′ = T ∪ { e }\{ e ′ } is a tree and such that 

d(T ′ ) ≤ d(T ) + ̃

 U e − ˜ u e ′ < d(T ) , 

so T ′ has an overall distance smaller than T , contradicting its
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3. Mixed integer non linear programming formulations 

In this section we present alternative MINLP formulations for

the MSTN that will be compared computationally in later sections.

All formulations use the following sets of decision variables: 

• Binary variables x e ∈ {0, 1}, e ∈ E , to represent the edges of the

spanning trees. 
• Continuous variables y v ∈ N v , v ∈ V, to represent the point se-

lected in each neighborhood. 
• Continuous variables u e ≥ 0, e = { v , w } ∈ E, to represent the

distance d(y v , y w 

) between the pairs of selected points. 

Property 1 (a) and (b) can be exploited in order to reduce the

number of x variables in the formulations. In particular, we only

need to define variables x e associated with edges that do not sat-

isfy the condition 1 (a). On the other hand, we can set at value 1

all variables x e associated with edges that satisfy 1 (b). 

Let U = { u ∈ R 

| E| 
+ : u e ≥ d(y v , y w 

) , for all e = { v , w } ∈ E, for some

y ∈ Y} denote implicitly the domain for the feasibility of the u vari-

ables. Then, a generic bilinear formulation for MSTN is 

min 

∑ 

e ∈ E 
u e x e (P xu )

s.t. x ∈ ST G , u ∈ U . 

In the following we resort to McCormick’s (1976) envelopes for

the linearization of the bilinear terms of the objective function. For

this, we define an additional set of continuous decision variables

θ e ≥ 0, e ∈ E to represent the products u e x e . Then the linearization

of the generic formulation (P xu ) is: 

min � = 

∑ 

e ∈ E 
θe (RL-MSTN)

s.t. θe ≥ u e − ˜ U e (1 − x e ) , ∀ e ∈ E, (LIN-Mc)

x ∈ ST G , u ∈ U , θe ≥ 0 , e ∈ E. 

Furthermore, throughout we will describe the set U using the

set of constraints 

‖ y v − y w 

‖ ≤ u e , ∀ e = { v , w } ∈ E, (U 1 )

y ∈ Y, (U 2 )

which set the distance values and impose that the y points belong

to the appropriate neighborhoods, respectively. 

Note that the above formulation ( RL-MSTN ) can be reinforced

by adding the following valid inequalities: θe ≥ ˜ u e x e , for all e ∈ E . 

The two formulations below differ from each other in the rep-

resentation of subtour elimination constraints (SEC). One of them

uses the classical representation of Edmonds (1970) , which con-

sists of a family with an exponential number of inequalities.The

second one uses a compact formulation based on the well-known

MTZ constraints ( Miller, Tucker, & Zemlin, 1960 ). Despite having a

weaker linear programming bound than the subtour elimination

representation for the classical MST problem, we use this formu-

lation since, in practice, it has given quite good results for other

problems related to spanning trees ( Fernández, Pozo, Puerto, &

Scozzari, 2016; Landete & Marín, 2014 ). Indeed, other compact rep-

resentations could be used, like for instance, the one by Martin

(1991) . In our experience, Miller et al. (1960) gives a good trade-

off between the number of variables it requires and the bounds it

produces. 

3.1. MSTN formulation based on classical representation of SECs 

min � = 

∑ 

e ∈ E 
θe (SEC-MSTN)
.t. ( LIN –Mc ) , (U 1 ) , (U 2 ) , ∑ 

e ∈ E 
x e = | V | − 1 , (ST 1 )∑ 

e = { v ,w } : v ,w ∈ S 
x e ≤ | S| − 1 , ∀ S ⊂ V, (ST 2 )

, θ ∈ R 

| E| 
+ , y ∈ R 

| V |×d , x ∈ { 0 , 1 } | E| . (D 1 )

Constraints (ST 1 ) impose that exactly | V | − 1 edges are selected

nd subtours are prevented by (ST 2 ) . (D 1 ) define the domain of the

ariables. 

As mentioned, the number of constraints in (ST 2 ) is exponen-

ial on | V |, so a separation procedure (e.g. max flow – min cut) to

ertify whether a solution is feasible or otherwise, to provide a vio-

ated constraint, is needed to solve this formulation. This is avoided

n the next formulation, which uses the MTZ compact representa-

ion of SECs ( Miller et al., 1960 ). 

.2. MSTN formulation based on Miller–Tucker–Zemlin 

The formulation based on the MTZ representation of SECs

uilds a tree rooted at an arbitrarily selected vertex where the arcs

f the tree are oriented towards the root. In our case we set ver-

ex 1 as the root of the trees. Associated with each edge { v , w } ∈ E

e define two additional binary decision variables, z v w 

and z w v , to

ndicate whether or not (v , w ) (resp. (w, v ) ) is used as a directed

rc. The set of such arcs is denoted by A . As it is usual for the rep-

esentation of the SEC constraints we use continuous variables s v ,

 ∈ V, associated with the vertices. The (MTZ-MSTN) formulation

s: 

in � = 

∑ 

e ∈ E 
θe (MTZ-MSTN)

s.t. ( LIN –Mc ) , (U 1 ) , (U 2 ) , 

 e = z u v + z v u , ∀ e = { u, v } ∈ E, (MTZ 1 )∑ 

(v , 1) ∈ δ−(1) 

z v 1 ≥ 1 , (MTZ 2 )

∑ 

(v ,w ) ∈ δ−(u ) 

z v w 

= 1 , ∀ v ∈ V \{ 1 } , (MTZ 3 )

 V | z v w 

+ s v − s w 

≤ | V | − 1 , ∀ (v , w ) ∈ A, (MTZ 4 )

 1 = 1 ; 2 ≤ s u ≤ | V | , ∀ u ∈ V \{ 1 } , (MTZ 5 )

, θ ∈ R 

| E| 
+ , y ∈ R 

| V |×d , x ∈ { 0 , 1 } | E| , (D 1 )

 ∈ { 0 , 1 } | E| , s ∈ R 

| V | 
+ . D 2 

The meaning of the new constraints is as follows. Constraints

MTZ 1 ) relate the edge and arc decision variables. The connectivity

ith the root is guaranteed by (MTZ 2 ) and (MTZ 3 ) . Subtours are

liminated by (MTZ 4 ) and (MTZ 5 ) , where the later set appropriate

ounds for the vertex variables s . The domain of the new variables

s set by (D 2 ) . 

As mentioned, the two formulations presented above use the

orm constraints (U 1 ) and (U 2 ) to represent the distance measure

or the edges and for the neighborhoods, respectively. As we see

elow both sets of constraints can also be handled by using either

OC or linear constraints. The following remarks show the explicit

epresentation of some general cases of this type of constraints. 

emark 3.1 ( � q -norm representation) . As shown in Blanco et al.

2014 , Lemma 3), if the norm ‖·‖ is a � q -norm with q ∈ Q and q =
r > 1 (with gcd(r, s ) = 1 ), then the constraints of the form ‖ X −
s 
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(  
 ‖ q ≤ Z as those of (U 1 ) can be rewritten as the following set of

nequalities: 

Q k + X k − Y k ≥ 0 , k = 1 , . . . , d, 

Q k − X k + Y k ≥ 0 , k = 1 , . . . , d, 

(Q k ) 
r ≤ (R k ) 

s Z r−s , k = 1 , . . . , d, ∑ d 
k =1 R k ≤ Z, 

R k ≥ 0 , k = 1 , . . . , d, 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ 

(3.1) 

here for k = 1 , . . . , d, Q k = | X k − Y k | and R k = | X k − Y k | q Z −1 /ρ,

ith ρ = 

r 
r−s . 

The above gives a representation of (U 1 ) with a number of SOC

nequalities that is polynomial in the dimension d and q . 

emark 3.2 (Polyhedral norm representation) . When the norm ‖·‖
s a polyhedral (or block) norm, a (linear) representation, much

impler than the one given in Remark 3.1 is possible. Let B ∗ be the

nit ball of its dual norm and Ext( B ∗) the set of extreme points of

 

∗. The constraint Z ≥ ‖ X − Y ‖ is then equivalent to 

 ≥ e t (X − Y ) , ∀ e ∈ Ext (B 

∗) , 

here e t denotes the transpose of e . 

.3. Computational comparison of the two formulations 

We have performed a series of computational experiments in

rder to compare the performance of the two formulations (SEC-

STN) and (MTZ-MSTN) , as well as to explore the limitations of

ach of them. For this we have generated several batteries of in-

tances with different settings. We consider complete graphs with

 number of vertices ranging in [5, 20], and randomly generated

oordinates in R 

2 and R 

3 ranging in [0, 100]. Distances are mea-

ured using the Euclidean norm and Euclidean balls are used as

eighborhoods of the vertices. In addition, we consider four differ-

nt scenarios for generating the radii to define the neighborhoods

f each vertex in a given instance: 

Small size neighborhoods ( r = 1 ): Radii randomly generated in [0,

5]. 

Small–medium size neighborhoods ( r = 2 ): Radii randomly gener-

ated in [5, 10]. 

Medium–large size neighborhoods ( r = 3 ): Radii randomly gener-

ated in [10, 15]. 

Large size neighborhoods ( r = 4 ): Radii randomly generated in

[15, 20]. 

The above four cases allow us to observe the performance of

he formulations for neighborhoods of varying sizes and to analyze

ow these sizes affect the computation the MSTN in each case. Fi-

ally, five different instances were generated for each combination

f number of vertices and radii, both in the plane and in the 3 D -

pace. The generated data are available at bit.ly/mstneigh . 

All the formulations were coded in C, and solved using Gurobi

.5 ( Gurobi Optimization Inc., 2015 ) in a Mac OSX El Capitan with

n Intel Core i7 processor at 3.3 gigahertz and 16 gigabytes of RAM.

 time limit of 2 hours was set in all the experiments. 

Tables 1 and 2 summarize the results of these experiments. In

hese tables the column CPU , under the heading of each formu-

ation, reports the average computing time (in seconds) to attain

ptimality. Whenever the time limit of 2 hours is reached with-

ut certifying optimality, columns under GAP report the average

ercentage deviation of the best solution found during the explo-

ation with respect to the lower bound at termination. Columns

nder #Nodes report the average number of nodes explored in

he branch-and-bound search, whereas column SEC gives the aver-

ge number of constraints (ST 2 ) incorporated to formulation (SEC-

STN) throughout the solution process. Finally, the last column
n each block reports the percentage of instances optimally solved

ith each formulation. 

Observe that the computing times required by ( SEC-MSTN ) are

n most cases smaller than those required by (MTZ-MSTN) . Fur-

hermore, some instances that could not be solved with (MTZ-

STN) , were optimally solved with (SEC-MSTN) . In most of the

ases where (SEC-MSTN) did not succeed, (MTZ-MSTN) was also

ot able to solve the corresponding instance. Note that, for the in-

tances with n = 20 , we only report the results for the first sce-

ario ( r = 1 ), since neither (SEC-MSTN) nor (MTZ-MSTN) were able

o solve any of such instances for r ≥ 2. We would like to highlight

hat, even if the 3-dimensional instances have a higher number of

ariables than the planar ones, the results, in terms of computing

imes, percentage deviations, and number of optimally solved in-

tances are better for these instances than for the 2-dimensional

nes. Observe that the difficulty of an instance is highly related to

hether or not the neighborhoods have non-empty intersections;

n such cases, the continuous relaxation tends to collapse the ver-

ices of intersecting neighborhoods into a single one, which is not

ecessarily an optimal strategy. This justifies the higher difficulty

f planar instances since, with uniform randomly generated points

nd given radii, the probability of intersection of neighborhoods is

igher in case of the plane than in the space ( Dufour, 1973 ). 

. Branch-and-cut solution algorithm 

In this section we describe the branch-and-cut solution algo-

ithm that we propose for solving MSTN. The special structure of

STN, with disjoint domains for each set of variables – x and u –

nd a bilinear objective function makes it possible to apply well-

nown Benders-like decomposition methods ( Benders, 1962; Geof-

rion, 1972 ). This type of well-known solution schemes have been

idely applied to problems with two sets of structural decision

ariables, in which the subproblem that results when fixing one

f the sets of variables can be efficiently solved. Note that, as men-

ioned before, this requisite is satisfied in the case of MSTN. 

In order to warrant the convergence properties of the approach,

e also apply reformulation techniques to the bilinear objective

unction. For a given spanning tree x̄ ∈ ST G , the “optimal” vertices

nd distances of its associated MSTN, can be computed by solving

he following convex subproblem: 

 ( ̄x ) = min 

∑ 

e ∈ E 
u e ̄x e PU x̄ 

s.t. u ∈ U 

As already mentioned, ( PU x̄ ) is a continuous SOC problem,

hich can be efficiently solved with on-the-shelf solvers. Note also

hat the number of u variables in ( PU x̄ ) reduces to n − 1 , because

nly distances associated with the edges e ∈ E with x̄ e = 1 need

o be computed. Hence, (generalized) Benders decomposition is a

uitable methodology for solving the MSTN problem. The following

esult states explicitly the form of the Benders cuts that allow to

se particular solutions of ( PU x̄ ) to solve MSTN. 

heorem 4.1. Let x̄ ∈ ST G and u ( ̄x ) its associated ( PU x̄ ) solution.

hen, 

≥ u ( ̄x ) + 

∑ 

e : ̄x e =1 ̂

 U e (x e − 1) + 

∑ 

e : ̄x e =0 ̂

 u e x e , 

s a valid cut for MSTN, where, as before, � = 

∑ 

e ∈ E θe with θ e ≥
, e ∈ E; and ̂ U e and ̂ u e are strict upper and lower bounds on the

aximum and minimum values of the distance of edge e , respectively,

.e. ̂ U e > ̃

 U e and ̂ u e < ̃

 u e for all e ∈ E. 

roof. Let us consider the following equivalent reformulation of

 PU ) based on the McCormick linearization of the bilinear terms
x̄ 

http://bit.ly/mstneigh
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Table 1 

Results of (MTZ-MSTN) and (SEC-MSTN) for R 2 instances. 

(MTZ-MSTN) (SEC-MSTN) 

r n CPU #Nodes GAP %Solved CPU #SECs #Nodes GAP %Solved 

1 5 0.0652 5.40 100 0.0250 3.40 9.00 100 

6 0.0965 7.60 100 0.0334 6.40 21.20 100 

7 0.1403 84.60 100 0.0456 9.60 54.00 100 

8 0.1917 201.60 100 0.0677 9.20 41.40 100 

9 0.2592 37.60 100 0.0826 29.60 76.00 100 

10 0.4843 434.80 100 0.1318 64.60 241.40 100 

11 0.6472 568.20 100 0.3922 123.80 552.60 100 

12 0.9159 712.00 100 0.3083 156.40 547.80 100 

13 10.9525 3145.80 100 1.1175 419.00 1314.80 100 

14 4.7581 4014.80 100 1.1627 300.40 1043.60 100 

15 657.1666 41153.60 100 4 4 4.5906 1474.20 17828.00 100 

20 2915.1011 110070.80 100 840.0096 2431.20 32173.80 100 

2 5 0.0820 47.00 100 0.0263 7.40 54.60 100 

6 0.1226 44.10 100 0.0451 11.90 84.80 100 

7 0.1571 123.20 100 0.0582 18.60 95.60 100 

8 0.4895 480.80 100 0.20 0 0 98.40 457.40 100 

9 0.5531 415.80 100 0.3984 128.40 666.20 100 

10 1.3820 915.40 100 0.7600 174.40 1125.00 100 

11 1.6639 835.60 100 1.2961 235.80 1050.20 100 

12 32.8139 12301.20 100 8.2899 832.80 9301.60 100 

13 143.7873 16259.40 100 9.7330 4685.40 68409.20 100 

14 1467.5540 44337.00 7.64% 80 661.3465 3252.60 36310.60 100 

15 3428.0761 423135.80 4.97% 80 3424.9741 15712.80 179939.00 6.29% 60 

3 5 0.0958 44.20 100 0.0354 9.40 79.80 100 

7 0.2645 414.60 100 0.2772 189.70 1133.40 100 

8 1.6716 2097.80 100 1.1393 338.60 1894.20 100 

9 3.7345 3827.40 100 3.8655 407.60 3515.40 100 

10 5.9807 3465.20 100 3.8294 333.80 2426.20 100 

11 713.2283 172376.20 100 976.5382 61128.20 363205.60 100 

12 1054.4171 479364.20 100 2828.2251 97800.80 576762.00 100 

13 3323.6210 279362.20 13.45% 60 4626.0085 116751.40 953914.60 20.98% 80 

14 > 7200 1385623.40 30.04% 0 > 7200 27120.40 162667.60 38.07% 0 

15 > 7200 1473884.40 19.43% 0 > 7200 87730.20 392951.00 23.65% 0 

4 5 0.0886 33.20 100 0.0288 4.80 47.40 100 

6 0.1688 307.20 100 0.1797 95.80 709.20 100 

8 2.0333 1976.60 100 1.1078 289.80 1562.40 100 

9 4.4483 4936.00 100 9.3935 4 4 4.60 6657.20 100 

10 67.5709 33224.80 100 194.9068 1224.20 28680.60 100 

11 469.3033 198141.80 100 315.9130 6463.80 70995.60 100 

12 2471.0749 403914.60 6.45% 80 822.4408 105,361.40 906147.00 100 

13 4609.7707 874785.60 16.88% 40 5134.5084 8477.00 163847.00 19.64% 40 

14 > 7200 807955.40 44.52% 0 > 7200 37016.40 192311.20 51.26% 0 

15 > 7200 948641.60 34.07% 0 > 7200 29946.80 168779.80 43.33% 0 
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of the objective function in the original MSTN formulation: 

u ( ̄x ) = min 

∑ 

e ∈ E 
θe 

s.t. θe ≥ u e + ̂

 U e ( ̄x e − 1) , e ∈ E (RPU x )

θe ≥ ̂ u e ̄x e , e ∈ E 

u ∈ U . 

Note that the reformulation (RPU x ) is a convex optimization prob-

lem, and Slater condition holds ( Slater, 1950 ). Hence, (necessary

and sufficient) optimality conditions can be derived from the fol-

lowing Lagrangian function associated with ( PU x̄ ) : 

L ( ̄x , θ, u ;λ, μ, ν) = 

∑ 

e ∈ E 
θe −

∑ 

e ∈ E 
λe (θe − u e + ̂

 U e (1 − x̄ e )) 

−
∑ 

e ∈ E 
μe (θe − ̂ u e ̄x e ) + νt G (u ) , 

where G ( u ) ≤ 0 are the constraints (only involving u -variables)

defining U . 

Let θ ∗
e , u ∗e , e ∈ E , be an optimal solution to (RPU x ) and λ∗, μ∗

and ν∗ the associated optimal multipliers. Then, λ∗ and μ∗ must

satisfy: 

1 − λ∗
e − μ∗

e = 0 , ∀ e ∈ E, (4.1)
ogether with the complementary slackness constraints: 

∗
e (θ

∗
e − u 

∗
e + ̂

 U e (1 − x̄ e )) = 0 , ∀ e ∈ E, (4.2)

∗
e (θ

∗
e − ̂ u e ̄x e ) = 0 , ∀ e ∈ E. (4.3)

rom the equations above, we get that if x̄ e = 1 , then μ∗
e = 0 by

4.3) , since θ ∗
e ≥ u ∗e > ˆ u e . Hence, by (4.1) , λ∗

e = 1 . Besides, if x̄ e = 0 ,

y (4.2) and because u ∗e < ̂

 U e , we get that θ ∗
e = 0 and λ∗

e = 0 . Again,

pplying (4.1) , we derive that μ∗
e = 1 . Thus, we conclude that, the

alues of the optimal Lagrangian multipliers are: 

∗
e = x̄ e and μ∗

e = 1 − x̄ e , ∀ e ∈ E. (4.4)

On the other hand, since u (x ) = � = 

∑ 

e ∈ E θe = max λ≥0 ,μ≥0 

in θ,u L (x, θ, u ;λ, μ, ν) also holds for any x ∈ ST G , we have that 

≥ min 

θ,u 
L ( ̄x , θ, u ;λ∗, μ∗, ν∗) 

= 

∑ 

e ∈ E 
θ ∗

e −
∑ 

e ∈ E 
λ∗

e (θ
∗
e − u 

∗
e + ̂

 U e (1 − x̄ e )) 

−
∑ 

e ∈ E 
μ∗

e (θ
∗
e − ̂ u e ̄x e ) + ν∗t G (u 

∗) 

= 

∑ 

e ∈ E 
θ ∗

e −
∑ 

e ∈ E 
λ∗

e (θ
∗
e − u 

∗
e + ̂

 U e (1 − x e )) 
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Table 2 

Results of (MTZ-MSTN) and (SEC-MSTN) for R 3 instances. 

(MTZ-MSTN) (SEC-MSTN) 

r n CPU #Nodes GAP %Solved CPU #SECs #Nodes GAP %Solved 

1 5 0.0677 3.60 100 0.0282 2.40 17.20 100 

6 0.1049 11.80 100 0.0429 3.00 14.00 100 

7 0.2137 24.40 100 0.0694 5.60 24.80 100 

8 0.2439 52.40 100 0.0813 6.20 38.40 100 

9 0.3733 166.80 100 0.1298 13.40 127.40 100 

10 0.3803 56.20 100 0.1442 34.00 127.40 100 

11 1.0249 281.40 100 0.3568 27.60 336.20 100 

12 0.6932 235.20 100 0.2772 62.00 225.00 100 

13 1.3241 763.40 100 0.9351 113.60 819.60 100 

14 4.1596 1112.00 100 2.6353 200.80 1164.60 100 

15 4.2952 1286.20 100 2.5708 197.00 812.40 100 

20 67.5323 6555.20 100 8.9617 372.20 1441.00 100 

2 5 0.0983 12.40 100 0.0431 6.80 37.40 100 

6 0.1479 27.40 100 0.0497 4.70 35.30 100 

7 0.2058 51.80 100 0.0770 9.20 55.80 100 

8 0.3084 211.40 100 0.1645 49.80 263.00 100 

9 0.8943 382.00 100 0.4596 86.20 593.80 100 

10 0.5047 170.60 100 0.2185 50.60 267.80 100 

11 1.4917 653.40 100 0.5416 134.00 679.60 100 

12 3.2860 1814.40 100 5.4726 462.80 2440.20 100 

13 5.3095 1956.40 100 5.6612 437.20 2344.40 100 

14 16.8888 4485.20 100 13.0737 1108.60 9084.40 100 

15 100.5050 14664.20 100 54.8965 1524.20 12674.20 100 

3 5 0.1034 12.00 100 0.0450 3.00 39.60 100 

7 0.2737 199.30 100 0.1663 79.70 428.00 100 

8 1.0901 972.40 100 1.6812 230.40 1323.80 100 

9 15.9457 3589.40 100 2.0036 295.00 3520.80 100 

10 2.0609 1124.00 100 2.2637 259.80 1459.20 100 

11 29.7077 5477.80 100 34.5579 549.20 7713.00 100 

12 330.0074 19946.80 100 531.3279 1580.20 20383.00 100 

13 1069.2640 37625.20 100 668.1420 2349.60 30331.40 100 

14 3875.3014 152561.80 15.19% 60 2519.3367 11488.00 112377.40 6.87% 80 

15 1001.7704 47758.80 100 160.5466 4114.40 37114.80 100 

4 5 0.0875 21.60 100 0.0469 6.80 42.60 100 

6 0.2094 134.20 100 0.1156 28.00 255.40 100 

8 0.8188 832.20 100 1.1261 204.00 1188.60 100 

9 2.8822 2408.60 100 1.7530 329.40 4937.60 100 

10 6.4525 3461.40 100 7.0799 525.80 3539.00 100 

11 32.0012 9411.20 100 37.8657 1084.40 9208.20 100 

12 70.9765 12658.60 100 37.6467 1104.00 11910.80 100 

13 710.0275 10 0 078.40 100 1679.7648 52401.40 287336.00 100 

14 4635.9384 287990.20 27.48% 60 6433.5763 39467.20 192079.80 25.48% 40 

15 5741.0396 115401.20 7.12% 20 3609.2785 11392.80 75087.00 10.55% 60 
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−
∑ 

e ∈ E 
μ∗

e (θ
∗
e − ̂ u e x e ) + ν∗t G (u 

∗) 

−
∑ 

e ∈ E 
λ∗

e ( ̂
 U e (1 − x̄ e )) + 

∑ 

e ∈ E 
λ∗

e ( ̂
 U e (1 − x e )) 

−
∑ 

e ∈ E 
μ∗

e ( ̂  u e x e ) + 

∑ 

e ∈ E 
μ∗

e ( ̂  u e ̄x e ) 

= u ( ̄x ) + 

∑ 

e ∈ E 
λ∗

e ̂
 U e (x e − x̄ e ) + 

∑ 

e ∈ E 
μ∗

e ̂
 u e (x e − x̄ e ) 

= u ( ̄x ) + 

∑ 

e ∈ E: ̄x e =1 ̂

 U e (x e − 1) + 

∑ 

e ∈ E: ̄x e =0 ̂

 u e x e . 

his concludes the proof. �

Note that, by construction, the above generalized Benders cuts

mply that, we can compare the value of the subproblem ( PU x̄ ) as-

ociated with a given spanning tree x̄ ∈ ST G , u ( ̄x ) , with the value

f the subproblem (RPU x ) associated with a different spanning tree

 ∈ ST G , u ( x ). In particular, if there exist e 1 , e 2 ∈ E with x̄ e 1 = 1 and

 e 1 = 0 , and x̄ e 2 = 0 and x e 2 = 1 , then the value of u ( x ) is at least

 ( ̄x ) − ̂ U e 1 + ̂

 u e 2 . In other words, the difference between the values

f the two subproblems is bounded by the maximum amount that

an be saved (in the cost function) by removing e 1 , plus the mini-

um gain that can be attained by adding e . Therefore, the relaxed
2 
aster problem at the K th iteration of the row-generation solution

lgorithm can be stated as: 

∗ = min �

� ≥ u ( ̄x k ) + 

∑ 

e : ̄x k e =1 ̂

 U e (x e − 1) + 

∑ 

e : ̄x k e =0 ̂

 u e x e , k = 1 , . . . , K, 

x ∈ ST G . (4.5) 

The reader may note that the cuts ( PU x ) can be interpreted

s some form of lifting of the surrogated McCorminck inequalities

LIN-Mc) , after projecting out the u variables in formulation (RL-

STN) . 

Using the above cuts algorithmically gives rise to the solution

cheme described in Algorithm 1 : 

The stopping criterion is that the gap between the upper and

ower bound does not exceed the fixed threshold value ε. 

Theorem 2.4 in Geoffrion (1972) states the finite convergence

f the decomposition approach under the following assumptions:

onvexity and finiteness of the “separable” feasible domains, close-

ess of the “linking” constraints between the sets, and convexity of

he objective functions. In our case, the finiteness of the number of

nderlying spanning trees of ST G , the convexity of ( PU x̄ ) for any

 ∈ ST G , and the linear separability of the problem allows to ap-

ly the above result, which assures that Algorithm 1 terminates
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Algorithm 1: Decomposition algorithm for solving MSTN. 

Initialization : Let x 0 ∈ ST G be an initial solution and ε a 
given threshold value. 

Set LB = 0 , UB = + ∞ , x̄ = x 0 . 

while | UB − LB | > ε do 

1. Solve (4.5) for x to get u ( ̄x ) . 

2. Add the cut � ≥ u ( ̄x ) + 

∑ 

e : ̄x e =1 ̂

 U e (x e − 1) + 

∑ 

e : ̄x e =0 ̂

 u e x e to the 

current master problem. 

3. Obtain the optimal value �̄ to the current master problem, 

and its associated solution x̄ . 

4. Update LB = max { LB, �̄} and UB = min { UB, 
∑ 

e ∈ E u ( ̄x ) e ̄x e } 
end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Average results for the decomposition approach for R 2 instances. 

r n CPU #SEC #BendersCuts #NodesB%B %GAP 0 %GAP %Solved 

1 5 0.0065 1.20 0.20 0.00 5.45 100 

6 0.0196 3.60 2.40 10.40 18.99 100 

7 0.0328 5.60 4.00 22.80 12.07 100 

8 0.0347 3.60 3.80 23.40 15.41 100 

9 0.0646 12.80 7.60 64.60 18.79 100 

10 0.1796 26.60 23.40 180.00 20.06 100 

11 0.5341 116.60 68.40 950.60 28.48 100 

12 0.6484 213.20 71.80 1129.00 32.67 100 

13 1.5531 246.20 167.60 2573.80 37.76 100 

14 1.6703 300.60 177.00 2204.20 32.39 100 

15 45.3193 1016.40 1637.40 23077.60 47.74 100 

20 333.5085 1628.60 3721.80 59876.80 39.75 100 

2 5 0.0464 4.20 6.40 25.60 29.32 100 

6 0.0730 6.70 11.40 50.90 24.67 100 

7 0.0678 12.20 10.80 78.20 28.19 100 

8 0.2743 21.60 43.60 311.60 41.06 100 

9 0.3111 55.20 46.80 492.20 30.63 100 

10 0.4646 78.00 66.60 721.40 33.22 100 

11 1.3472 245.40 167.80 2382.60 35.11 100 

12 160.8519 864.80 3027.00 36569.60 61.72 100 

13 326.1787 1598.20 2800.40 50047.80 50.47 100 

14 226.5067 2024.20 6463.60 96243.00 43.07 100 

15 5824.7652 8023.00 18775.80 284590.80 73.80 3.76 20 

3 5 0.1152 3.80 5.80 24.40 27.67 100 

7 0.4851 58.10 93.50 712.60 50.67 100 

8 3.2475 158.20 526.80 3963.60 59.22 100 

9 17.3417 521.00 1492.40 14560.00 67.32 100 

10 5.8312 226.20 595.00 5933.40 50.17 100 

11 2603.6210 4308.40 12569.00 168712.00 75.77 40.36 80 

12 > 7200 5223.40 23172.40 275986.80 81.98 22.01 0 

13 > 7200 7191.60 20230.60 282031.60 85.37 20.33 0 

14 > 7200 15425.00 14481.80 311567.60 90.64 53.59 0 

15 > 7200 11379.40 13846.80 310549.80 83.69 35.16 0 

4 5 0.0476 3.80 5.80 24.20 33.07 100 

6 0.3993 36.20 83.80 428.60 56.12 100 

8 2.9985 187.20 424.40 3055.80 62.99 100 

9 53.7040 418.00 2631.80 23586.40 67.46 100 

10 1013.3837 14 4 4.00 7611.00 72987.20 82.73 100 

11 4256.8194 4636.60 16430.60 204272.20 84.16 30.36 60 

12 6232.3367 6569.80 2040 0.0 0 250 014.0 0 77.37 16.60 20 

13 > 7200 8218.80 19321.40 299586.40 85.78 29.58 0 

14 > 7200 13880.00 13080.80 336546.40 93.16 71.25% 0 

15 > 7200 16128.60 12538.00 326406.20 94.80 50.14% 0 
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in a finite number of steps (for any given ε ≥ 0). Moreover, if

ε ≤ min { ̃  U e 1 − ˜ u e 2 ≥ 0 : e 1 � = e 2 ∈ E} , it outputs an optimal MSTN. 

To avoid the enumeration of all spanning trees of G , and to re-

duce the number of iterations, several recipes can be applied. One

of them is to start with a non-empty set of cuts which give a suit-

able initial representation of the lower envelope of �. Hence, if

ST G denotes the set of trees associated with the current set of

constraints ( PU x ) , the representation we use for the master prob-

lem is: 

min 

∑ 

e ∈ E 
θe (4.6)

s.t. 
∑ 

e ∈ E 
θe ≥ u ( ̄x ) + 

∑ 

e : ̄x e =1 ̂

 U e (x e − 1) + 

∑ 

e : ̄x e =0 ̂

 u e x e , ∀ ̄x ∈ ST G , (4.7)

θe ≥ ˜ u e x e , e ∈ E, 

x ∈ ST G . 

Given that the master problem exhibits a combinatorial nature,

the performance of a Benders-like algorithm can be improved by

embedding the cut generation mechanism within a branch-and-

cut scheme. This is the current trend nowadays ( Fischetti, Ljubic, &

Sinnl, 2016a; 2016b ). This requires to separate the optimality cuts

in addition to any other generated cuts, at the nodes of the enu-

meration tree. Note that this approach is also valid in our case, as

the cuts (4.7) are also valid if x̄ is the solution to a linear program-

ming relaxation of a valid MST formulation. 

4.1. Computational experiments 

The proposed decomposition approach has been tested over the

same set of benchmark instances used to compare the compact for-

mulations (see Section 3.3 ). Based on the results obtained in such a

comparison, and also to take advantage of the possibility of adding

dynamically violated SECs within the branch-and-cut, we combine

the decomposition approach with the classical SEC representation

(SEC-MSTN) . In addition to the average statistics reported in the

previous tables (CPU, #SECs, #Nodes, GAPs, and %Solved), we also

report now the average number of Benders’ type cuts, #Bender-

sCuts, and the gap after the exploration of the root node of the

branch-and-cut tree, %GAP 0 . Average results for the 4 scenarios are

reported in Tables 3 and 4 . 

As can be seen, the computing times required by the decom-

position approach are smaller than those obtained with the MINLP

formulations for the small size radii scenario and also in the small-

medium size radii scenario for the 3D case. However, the results

obtained for the medium-large and large size scenarios reveal that

the MINLP formulations have a better performance than the de-

composition scheme. Note that the cuts induced by our approach

depends of the available upper and lower bounds on the lengths of
he edges in the graph. These bounds are tight for the small size

adii scenarios, but far from being a representative value of the ac-

ual length of the edge in the remaining scenarios. Hence, a large

umber of cuts are needed to certify optimality of the solution in

hese cases. 

. A mathheuristic for MSTN 

The results of the computational experiments section indicate

hat MSTN instances with up to less than 15 vertices can be opti-

ally solved within the allowed time limit, but as the sizes of the

nstances increase the computing times become prohibitive. Below

e present a mathheuristic alternative to obtain near-optimal solu-

ions to larger MSTN instances. The main idea under the proposed

lgorithm is based on the observation that the problem is a bicon-

ex problem, since fixing any of the set of variables the problem

ecomes an efficiently solvable optimization problem (in case x is

xed, the problem is a continuous SOCP, while if u is fixed, the

roblem is a standard MST problem). 

The mathheuristic consists of two embedded loops. The outer

oop is a multistart procedure. The input of each iteration in this

oop is a spanning tree, which will be used in the initial iteration

f the inner loop. The number of iterations of the outer loop is a

arameter related to the initial spanning tree generation mecha-

ism that we use, which will be explained later on. 
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Table 4 

Average results for decomposition approach for R 3 instances. 

r n CPU #SEC #BendersCuts #NodesB%B %GAP 0 %GAP %Solved 

1 5 0.0063 0.80 0.00 0.00 2.28 100 

6 0.0125 1.60 0.60 0.00 4.53 100 

7 0.0138 2.20 1.80 9.80 9.31 100 

8 0.0445 3.60 3.40 18.80 12.49 100 

9 0.0573 6.00 5.80 28.60 9.66 100 

10 0.0883 9.60 9.20 72.60 8.28 100 

11 0.2478 30.20 17.20 162.00 17.26 100 

12 0.2455 59.00 25.00 314.20 16.00 100 

13 0.8280 87.60 85.20 1035.40 17.73 100 

14 1.1512 194.80 95.20 1535.20 11.92 100 

15 1.7121 264.00 130.20 1761.60 18.39 100 

20 8.2175 702.20 377.80 7398.60 16.68 100 

2 5 0.0218 3.80 2.40 7.80 12.34 100 

6 0.0292 2.40 3.30 12.50 8.57 100 

7 0.0388 4.20 4.60 18.80 18.30 100 

8 0.2397 24.00 33.40 247.00 23.13 100 

9 0.2389 26.00 32.60 304.00 18.73 100 

10 0.2859 50.80 33.00 398.00 12.74 100 

11 0.5181 58.00 57.80 555.80 20.94 100 

12 4.8255 263.20 369.80 5574.80 28.77 100 

13 5.6111 498.60 635.80 9576.20 28.87 100 

14 11.3739 1388.00 1459.40 32630.40 27.78 100 

15 35.4121 1873.00 2982.00 67628.20 33.80 100 

3 5 0.0281 2.80 2.60 10.00 16.98 100 

6 0.2437 26.80 43.80 276.40 29.17 100 

7 0.2725 39.60 42.60 348.20 38.34 100 

8 1.5945 131.40 235.40 1915.20 49.20 100 

9 3.9492 292.40 1025.80 9022.00 45.81 100 

10 2.5790 313.00 272.40 3468.00 26.01 100 

11 55.9248 689.40 1979.60 26140.60 42.86 100 

12 1258.5048 2060.40 8294.40 130089.80 47.82 100 

13 3005.2253 5083.40 10824.20 212760.60 44.99 3.81 60 

14 > 7200 9029.40 15154.60 2880 0 0.20 53.37 17.53 0 

15 1751.1580 9504.80 10 049.0 0 24390 0.0 0 40.75 100 

4 5 0.0312 3.00 3.60 16.60 19.69 100 

6 0.1750 13.80 29.60 122.20 27.05 100 

7 0.6724 54.80 94.20 543.60 22.12 100 

8 1.6626 162.80 218.80 1898.40 46.48 100 

9 9.5678 326.60 916.20 8138.60 45.42 100 

10 22.7335 576.60 1450.40 17267.40 47.61 100 

11 107.0304 1037.60 3051.40 40153.60 50.56 100 

12 1005.8061 1904.80 6533.00 99639.80 50.15 100 

13 999.9207 5066.20 12905.60 211964.00 50.13 100 

14 7200.3120 9951.60 14550.00 285772.40 70.62 30.61% 0 

15 6123.5383 12659.40 12203.20 266014.20 55.75 16.35% 20 
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The rationale of the inner loop is to alternate in solving sub-

roblems in the solution spaces of the two main sets of variables ( x

nd u ). We proceed iteratively, and each iteration consists of solv-

ng a pair of subproblems, one in each space of variables. When

olving the subproblem in one solution space we fix the values of

he variables of the other space. 

Formally, let (P x̄ u ) and (P x ̄u ) , respectively, denote the subprob-

ems of the generic MSTN formulation (P xu ) of Section 3 , when x̄

nd ū are fixed. That is, 

in 

∑ 

e ∈ E 
u e ̄x e (PU x ) 

s.t. u ∈ U 

nd min 

∑ 

e ∈ E 
ū e x e (PX u ) 

s.t. x ∈ ST G . 

Fig. 4 shows a flowchart of the inner loop of the mathheuristic.

We start with a given spanning tree T 0 associated with a so-

ution x 0 . In the k th iteration, we compute the distances u ( x k )

n the current tree T k and update the vector ū k +1 according to

¯ k and u ( x k ). In the first iteration we use the distance lower

ounds ū 0 = ̃

 u . At each iteration k > 0 we first solve problem
( PX ū k ) and then compute the vertices distances u ( x k ) in its op-

imal tree T k , by solving ( PU x k ) . All components ū k e associated

ith edges e ∈ T k are updated to the corresponding component

f the distances vector u ( x k ). The remaining components remain

nchanged. The procedure terminates when two consecutive iter-

tions produce the same tree or a maximum number of iteration 

s attained. 

For the sake of analyzing the quality of solutions obtained with

he mathheuristic we introduce the notion of partial optimal MSTN

dapting the notation in Wendell and Hurter (1976) for the gen-

ral case of minimizing a non-separable function subject to disjoint

onstraints. 

efinition 5.1 (Partial optimum MSTN) . Let x̄ ∈ ST G and ū ∈ U .

( ̄x , ū ) is said a partial optimum MSTN if: 
 

e ∈ E 
x̄ e ̄u e ≤

∑ 

e ∈ E 
x e ̄u e and 

∑ 

e ∈ E 
x̄ e ̄u e ≤

∑ 

e ∈ E 
x̄ e u e 

or all x ∈ ST G and u ∈ U . 

Observe that a partial optimum MSTN ( ̄x , ū ) implies that x̄ is a

ST for the weights ū and that ū are the optimal distances with

espect to x̄ . The following result states the partial optimality of

he solutions generated by the proposed mathheuristic. 

heorem 5.2. The sequence of objective values produced at the inner

oop of the mathheuristic, corresponding to a given initial solution,

onverges monotonically to a partial optimum MSTN. 

roof. Let f (x, u ) = 

∑ 

e ∈ E x e u e denote the objective function value

ssociated with a given solution x ∈ ST G , u ∈ U . Let also

 

1 , . . . , x k ∈ ST G and u 1 , . . . , u k ∈ U be the solutions obtained in the

rst k steps of the alternate convex search for a given initial solu-

ion. 

Observe that in the mathheuristic, for u j given, x j+1 is obtained

y solving ( PX ū ) with weights ū = u j . Hence, 
 

e ∈ E 
x j+1 

e u 

j 
e ≤

∑ 

e ∈ E 
x e ū 

j 
e , ∀ x ∈ ST G . 

Next, solving ( PU x̄ ) with x̄ = x j+1 , one obtains u (x j+1 ) and then

 

j+1 with: 
 

e ∈ E 
x j+1 

e u (x j+1 ) e = 

∑ 

e ∈ E 
x j+1 

e u 

j+1 
e ≤

∑ 

e ∈ E 
x j+1 

e u e , ∀ u ∈ U . 

Hence, f (x k , u k ) ≥ f (x k , u (x k )) ≥ f (x k +1 , u k +1 ) , so the sequence

 f (x j , u j ) } j∈ Z + is monotonically non-increasing. Thus, since f ( x , u )

0 for all x ∈ ST G and u ∈ U , the sequence of objective values

onverges. 

Let �∗ = lim j→∞ 

f (x j , u j ) and x ∗ ∈ ST G , u ∗ ∈ U such that

f (x ∗, u ∗) = �∗. Since ST G and U are closed sets and f is contin-

ous, we have that taking limits: 

∗ = 

∑ 

e ∈ E 
x ∗e u 

∗
e ≤

∑ 

e ∈ E 
x e u 

∗
e and �∗ = 

∑ 

e ∈ E 
x ∗e u 

∗
e ≤

∑ 

e ∈ E 
x ∗e u e . 

hus, ( x ∗, u ∗) is a partial optimum MSTN. �

Since only partial optimality of the solutions is assured at the

nd of each inner loop, it is possible that the mathheuristic gets

rapped at a local optimum. Hence we have incorporated a mul-

istart outer loop to allow escaping from local optimal. Note that

he mathheuristic becomes an exact solution method if all pos-

ible spanning trees are considered as initial solutions. However,

omplete enumeration is prohibitive, even if the number of poten-

ial MSTs is finite (despite using varying weights). On the other

and, we have observed that (i) the mathheuristic is sensitive to

he provided initial feasible solution, and; (ii) in many cases, a

ew changes over an initial standard MST with respect to the dis-

ances between the centers of the neighborhoods are enough to
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Fig. 4. Flowchart of the inner loop of the mathheuristic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Average results for the mathheuristic. 

2-dimensional instances 3-dimensional instances 

r n CPU %Dev CPU %Dev 

1 5 0.1004 0.0 0 0 0 0.1594 0.0 0 0 0 

6 0.2068 0.0 0 0 0 0.2200 0.0 0 0 0 

7 0.3368 0.0433 0.3614 0.0 0 01 

8 0.5220 0.0 0 0 0 0.7036 0.0 0 0 0 

9 0.6982 0.0 0 0 0 0.6792 0.0195 

10 1.2014 0.1768 1.2254 0.0 0 0 0 

11 1.8868 0.2679 2.1230 0.3749 

12 2.4382 0.0 0 0 0 2.3078 0.0 0 0 0 

13 3.0136 0.1319 4.1954 0.1223 

14 3.9986 0.1802 4.0428 0.0527 

15 5.9238 0.3095 5.4956 0.2659 

20 15.3978 0.2068 15.4622 0.0565 

2 5 0.1788 0.0 0 0 0 0.2416 0.0 0 01 

6 0.2603 0.0011 0.3098 0.0 0 0 0 

7 0.3972 0.1528 0.5358 0.0 0 0 0 

8 0.8566 0.0 0 0 0 1.3224 0.0 0 0 0 

9 0.9240 0.6322 0.9988 0.3318 

10 1.4706 0.1666 1.6722 0.0296 

11 2.0872 0.8081 2.5434 0.3964 

12 3.1428 0.0212 4.2852 0.2285 

13 3.7266 0.5755 6.3750 0.3975 

14 5.6144 0.5838 6.5618 0.0270 

15 9.1994 −0.0408 10.2092 0.3245 

3 5 0.1710 0.0 0 0 0 0.2370 0.0 0 0 0 

6 0.2134 0.0 0 0 0 0.6210 0.0 0 0 0 

7 0.5969 0.1360 0.7737 0.0713 

8 0.9008 0.1571 1.3504 0.0271 

9 1.3432 1.3086 2.3226 0.7177 

10 1.8258 0.8340 2.6464 0.4596 

11 3.0670 0.1899 4.4142 1.1838 

12 4.3984 0.1122 5.2298 0.0581 

13 4.9976 0.4673 7.1142 1.2851 

14 6.7682 −0.1210 10.2342 −0.1614 

15 8.2982 −0.0949 11.2072 0.2390 

4 5 0.1664 0.0 0 0 0 0.2738 0.0 0 0 0 

6 0.3942 0.1012 0.4942 0.5379 

7 0.7893 0.0601 0.9942 0.1123 

8 1.1640 0.0 0 0 0 1.6256 0.0353 

9 1.5462 0.7477 1.8514 0.4004 

10 2.2468 1.1261 2.6576 1.3283 

11 3.2060 0.7875 3.6996 0.6159 

12 4.5152 0.2935% 4.8816 0.1611 

13 5.0992 0.7808 7.2430 1.0225 

14 6.8126 −0.1978 9.6768 0.6739 

15 8.1124 0.0105 11.6100 −0.2135 

a  

p  

b  

o  

d  

e

u

find an optimal MSTN solution. Hence, we generate the set of ini-

tial spanning trees for the multistart procedure with an adaptation

of the method proposed in Sörensen and Janssens (2005) , which

is described in Algorithm 2 . In principle, this method generates

the whole set of spanning trees on a given graph (by increasing

order values relative to a given weight vector). In our adaptation,

we stop generating new spanning trees, when one of the following

criteria is met: (1) a given number of MSTs has already been gen-

erated; or, (2) no improvement has been obtained, in the MSTNs

obtained in the inner iterations, for a given number of outer

iterations. 

Algorithm 2: Initial solutions for the multistart procedure. 

Initialization : u 0 v w 

= ‖ v − w ‖ , ∀ v , w ∈ V and T 0 the MST with 

respect to u 0 , T = { T 0 } . 
for T ∈ T do 

Let e 1 , . . . , e n −1 be the edges of T . 

for i = 1 , . . . , n − 1 do 

Construct the MST with respect to u 0 , T i , such that e i 
does not belong to the tree but e 1 , . . . , e i −1 are part of 

it. Let c i be the weight of T i . 

end 

Choose T ′ ∈ { T 1 , . . . , T n −1 } with c(T 
′ 
) = min 

i =1 , ... ,n 
c i and add it 

to T . 
end 

A series of computational experiments have been performed to

analyze the computing times and the quality of the solutions ob-

tained with the overall heuristic. We report results based on two

batteries of benchmark instances. The first one is the same that

was used in our previous experiments. Here the goal is to compare

the quality of the solutions obtained by the exact and the heuris-

tic methods. The second one contains larger size instances and the

goal is to explore the limit of the mathheuristic. In the experi-

ments we do not fix limits on the number of inner iterations but

we set up the maximum number of trees generated (outer itera-

tions) to 100 × | E |. Table 5 summarizes the obtained numerical re-

sults. We report average values of the computing times consumed

the mathheuristic (CPU) and the percentage deviation (%Dev) with

respect to the optimal (or best-known) solutions obtained with the

exact approaches. Observe that the quality of the solutions is ex-

tremely good, as the maximum %Dev obtained in all the experi-

ments was 1.3086%. Furthermore, in most of the cases where the

exact approaches did not prove the optimality of the best solution

found, the heuristic produced a better solution. Indeed, many of

the proven optimal solutions obtained with the other approaches,

were also obtained with the mathheuristic. Moreover, in some

cases in which our exact approaches were not able to certify op-

timality within the time limit, the matheuristic gives better solu-

tions. Tables 6 and 7 show the results for the largest instances.

We report, apart from the average computing times, the percent-
ge deviations with respect to available lower (%Dev LB) and up-

er bounds (%Dev UB) for the optimal value of the MSTN. Lower

ounds were calculated by computing the MST with respect to the

riginal graph in which the edge lengths are given as the minimum

istance between the neighborhoods that contain the vertices of

ach edge, i.e.: 

¯
 e = min { d(y v , y w 

) : y v ∈ N v , y w 

∈ N w 

} , for e = { v , w } ∈ E. 
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Table 6 

Average results for the mathheuristic for large instances in the planar case. 

r | V | CPU %Dev LB % Dev UB % MST 

1 20 14.5532 23.0877 0.1201 40.00 

25 27.1624 27.6163 0.2969 40.00 

30 54.5254 27.8230 0.3004 40.00 

35 82.7320 28.8806 0.1985 40.00 

40 122.8916 28.7590 0.3342 40.00 

45 182.2026 38.7607 0.1451 80.00 

50 255.4392 43.0832 0.0912 80.00 

60 472.9626 40.6246 0.2814 20.00 

70 724.8468 43.4054 0.1118 80.00 

80 751.3728 47.7128 0.3567 40.00 

90 1064.7958 49.2007 0.0 0 0 0 10 0.0 0 

100 1480.0034 53.4484 0.1639 80.00 

2 20 16.4950 62.3051 1.3996 0.00 

25 31.6210 77.3769 0.34 4 4 20.00 

30 59.5594 77.6920 1.5311 0.00 

35 87.8010 86.6972 2.4308 0.00 

40 145.0846 87.3522 1.2426 40.00 

45 192.4576 84.7788 0.7022 60.00 

50 283.2516 91.5316 1.0501 40.00 

60 525.9362 96.1926 1.6971 0.00 

70 835.0496 96.2605 0.8858 20.00 

80 779.3946 97.2727 0.9087 40.00 

90 1122.9898 98.3883 0.5728 60.00 

100 1548.9070 99.3069 1.4232 40.00 

3 20 16.0632 90.6985 2.2212 20.00 

25 32.1278 96.2322 0.7643 20.00 

30 65.7792 97.5944 1.0350 0.00 

35 90.1888 98.4009 5.9840 0.00 

40 137.5042 99.0318 2.0271 0.00 

45 198.4974 99.0682 1.0427 40.00 

50 268.2828 99.8648 2.2477 20.00 

60 502.3478 10 0.0 0 0 0 3.2364 0.00 

70 816.0300 10 0.0 0 0 0 2.7085 20.00 

80 756.5704 10 0.0 0 0 0 2.3165 40.00 

90 1116.6500 10 0.0 0 0 0 1.8877 40.00 

100 1530.6052 10 0.0 0 0 0 1.5370 20.00 

4 20 16.4998 97.9307 2.7959% 20.00 

25 33.8690 99.3203 1.6366 20.00 

30 61.1976 10 0.0 0 0 0 2.6932 0.00 

35 89.4202 10 0.0 0 0 0 8.7080 0.00 

40 146.1266 10 0.0 0 0 0 3.3380 0.00 

45 213.8344 10 0.0 0 0 0 3.0796 20.00% 

50 282.9736 10 0.0 0 0 0 2.0663% 20.00 

60 486.8964 10 0.0 0 0 0 4.5859 0.00 

70 763.0016 10 0.0 0 0 0 4.2135 0.00 

80 748.1272 10 0.0 0 0 0 4.5767 0.00 

90 1085.8690 10 0.0 0 0 0 3.2538 20.00 

100 1668.2424 10 0.0 0 0 0 2.7675 20.00 
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Table 7 

Average results for the mathheuristic for large instances in the 3D case. 

r | V | CPU %Dev LB % Dev UB % MST 

1 20 14.6272 10.3986 0.0467 80.00 

25 40.6772 13.0944 0.0378 60.00 

30 69.8356 10.6289 0.0 0 06 80.00 

35 106.5134 11.2375 0.1286 60.00 

40 175.6634 11.0897 0.1831 40.00 

45 262.2358 15.1212 0.0322 80.00 

50 370.5236 17.9594 0.2323 60.00 

60 631.6412 14.9262 0.0 0 0 0 10 0.0 0 

70 1071.5590 18.0318 0.1747 60.00 

80 1071.1360 17.2028 0.1713 60.00 

90 1570.6312 17.1973 0.0046 80.00 

100 2256.3462 20.5805 0.1206 60.00 

2 20 24.0912 34.4738 0.9106 20.00 

25 49.7172 47.0066 0.4466 20.00 

30 81.0262 40.1495 1.3887 20.00 

35 123.2108 45.9130 0.4637 60.00 

40 211.2694 48.8337 0.9941 20.00 

45 295.5366 52.4260 0.2171 60.00 

50 401.4358 55.8653 0.5822 60.00 

60 743.1540 61.8838 0.2815 60.00 

70 1139.6448 68.2234 0.7040 40.00 

80 1145.8188 69.4113 0.4693 40.00 

90 1835.7320 71.7928 0.5406 40.00 

100 2456.1402 77.1601 0.1699 60.00 

3 20 24.9052 66.9737 2.4841 20.00 

25 51.9204 76.8203 2.8566 0.00 

30 83.2864 75.1517 3.4033 20.00 

35 136.2574 83.2923 0.8824 40.00 

40 207.1532 82.1425 3.4419 0.00 

45 293.3924 85.7698 1.1218 20.00 

50 431.9292 91.9528 1.6269 40.00 

60 741.9330 96.3082 2.9933 20.00 

70 1163.3446 97.8903 2.2103 0.00 

80 1231.5932 97.5674 0.9325 40.00 

90 1770.6206 98.3531 1.5740 20.00 

100 2357.2434 98.5889 2.7997 20.00 

4 20 24.4860 90.5059 4.3812 0.00 

25 50.64 4 4 93.6932 2.9003 0.00 

30 84.3946 96.3750 4.9004 20.00 

35 134.4824 97.3869 2.5519 20.00 

40 213.2442 98.0207 5.4728 0.00 

45 304.6368 99.5034 1.9230 0.00 

50 415.3388 99.3344 3.2609 0.00 

60 721.3308 99.9964 2.7762 20.00 

70 1189.9664 10 0.0 0 0 0 3.0113 0.00 

80 1233.2842 10 0.0 0 0 0 2.1201 20.00 

90 1922.6220 10 0.0 0 0 0 2.3436 0.00 

100 2412.5672 10 0.0 0 0 0 2.9934 20.00 
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t  
pper bounds are computed as the optimal value of ( PU x̄ ) , when

¯ is the standard MST. Finally, column % MST in Tables 6 and 7 re-

orts the percentage of instances (out of 5) in which the solution

f the matheuristic coincides with the upper bound (i.e. the un-

erlined MSTN equals the MST). As expected, the deviations with

espect to the lower and upper bounds increases as the radii of

he neighborhoods do. The same happens with the number of in-

tances in which the solutions of the MSTN coincide with those

f MST. In scenario 4, the instances with largest radii, the lower

ounds are close to zero in most of the cases since almost all

airs of neighborhoods intersect, and several 100% deviations were

btained. The reader may observe that deviation with respect to

ower bounds are few significative since these bounds are always

ather far from the actual optimal solution. We would also like to

mphasize that computing times for the 3-dimensional instances

re slightly larger than those obtained for the planar instances.

his behaviour is caused by the higher number of variables of the

roblems ( PU x̄ ) that must be iteratively solved in the inner loop of

he algorithm. However, the times do not seem to largely depend

f the size of the neighborhoods. 
. Concluding remarks 

We analyzed the problem of finding Minimum Spanning Trees

ith neighborhoods, where the neighborhoods are defined as SOC-

epresentable objects and the lengths of the arcs in the graph

re induced by a � q norm. Two MINLP formulations are pro-

ided whose differences come from the representation of the sub-

our elimination constraints. We propose a decomposition-based

ethodology to solve the problem based on the efficiency of solv-

ng SOCP problems. Furthermore, a new mathheuristic procedure

s applied to solve the problem exploiting not only the SOC-

epresentability of the neighborhoods but also that the MST prob-

ems are easily solvable. The results of an extensive computational

xperience are reported to compare all formulations and proce-

ures provided throughout this paper. In this paper, the results

f the experiments for Euclidean distances and � 2 -based neighbor-

oods are reported. We have also performed the same experiments

or � 1 -norm based distances and rectangular neighborhoods. They

re shown in Tables A .9 –A .15 in the Appendix. 

In addition, we have performed some experiments in order

o compare our mathematical programming approaches against
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Table 8 

Comparisons of brute-force enumeration with respect to our approach for small- 

size instances. 

� 2 � 1 

n # ST G List ST G BF (SEC-MSTN) BF (SEC-MSTN) 

5 125 0.040 0.11 0.0250 0.03 0.0076 

6 1296 0.032 1.39 0.0334 0.27 0.0143 

7 16,807 0.072 20.77 0.0456 3.73 0.0161 

8 262,144 0.163 359.54 0.0677 60.17 0.0231 

9 4,782,969 3.230 7616.38 0.0826 1187.91 0.0382 
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brute-force enumeration of the spanning trees and their cost eval-

uation by solving problem (P x̄ u ) for each of them. In Table 8 we

report the times for solving the MSTN of the planar instances used

in our computational experiments, both with a brute force strat-

egy (BF), and with our formulation (SEC-MSTN) . We show average

results for both for Euclidean ( � 2 ) norm with disk-neighborhoods,

and � 1 -norm with rectangular neighborhoods, both for the sce-

nario r = 1 . The enumeration of the spanning trees (# ST G ) for

a given undirected graph was performed by using the algorithm

provided in Shioura, Tamura, and Uno (1997) whose complexity is

O (| V | + | E| ) and their computation times (in seconds) are also re-
Table A9 

Results of MSTN–MTZ and MSTN–SEC for planar instances with � 1 norm and rectangular 

MTZ 

r n CPU #Nodes GAP %Solved 

1 5 0.0122 2.00 0 100 

6 0.0099 0.00 0 100 

7 0.0173 13.60 0 100 

8 0.0270 35.20 0 100 

9 0.0302 2.40 0 100 

10 0.0620 59.80 0 100 

11 0.0619 36.60 0 100 

12 0.1014 105.80 0 100 

13 0.1556 271.20 0 100 

14 0.1388 221.80 0 100 

15 0.3307 1682.80 0 100 

20 1.1922 3835.00 0 100 

2 5 0.0140 6.20 0 100 

6 0.0155 1.00 0 100 

7 0.0207 29.20 0 100 

8 0.0379 55.60 0 100 

9 0.0557 14.60 0 100 

10 0.0607 75.40 0 100 

11 0.0958 175.80 0 100 

12 0.1958 481.20 0 100 

13 0.3594 1777.60 0 100 

14 0.5830 2236.80 0 100 

15 2.4404 14591.80 0 100 

3 5 0.0146 8.00 0 100 

6 0.0124 0.00 0 100 

7 0.0342 50.40 0 100 

8 0.0859 386.20 0 100 

9 0.1039 160.40 0 100 

10 0.1108 282.00 0 100 

11 0.5803 3795.60 0 100 

12 0.9778 5493.40 0 100 

13 1.8502 12233.60 0 100 

14 3.2169 58069.80 0 100 

15 13.9309 56326.40 0 100 

4 5 0.0097 5.00 0 100 

6 0.0255 28.40 0 100 

7 0.0369 33.60 0 100 

8 0.0853 343.80 0 100 

9 0.1047 159.40 0 100 

10 0.2518 1612.00 0 100 

11 0.7276 5166.00 0 100 

12 0.9112 4334.20 0 100 

13 2.2704 13849.00 0 100 

14 2606.0142 155972.80 3.14 80 

15 1959.7415 160724.00 0.68 80 
orted in the third column of the table (List ST G ).In view of the

esults, one could estimate that for a complete graph with 15 ver-

ices and (optimistically) assuming that, once a spanning tree is

rovided, each problem (P x̄ u ) is solved in 10 −5 seconds, the overall

roblem would be solved in 19 , 461 , 950 , 684 seconds (roughly 625

ears), plus the time for listing all the spanning trees of the com-

lete graph. Our formulations solve these instances, in average, in

ess than 7.5 minutes using (SEC-MSTN) , and less than 46 seconds

pplying our decomposition scheme ( Algorithm 1 ). 
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ppendix A. Computational experiments for � 1 -norm based 

istances and rectangular neighborhoods 
neighborhoods. 

SEC 

CPU #SECs #Nodes GAP %Solved 

0.0035 3.40 0.00 0 100 

0.0076 8.00 8.20 0 100 

0.0143 8.00 0.00 0 100 

0.0161 9.80 1.00 0 100 

0.0231 13.40 7.80 0 100 

0.0382 19.60 16.80 0 100 

0.0419 22.60 56.80 0 100 

0.0642 30.40 42.20 0 100 

0.1025 128.00 349.40 0 100 

0.0840 52.00 146.00 0 100 

0.3354 437.20 1617.60 0 100 

1.3981 999.60 3234.80 0 100 

0.0085 4.60 4.60 0 100 

0.0098 8.17 21.67 0 100 

0.0171 12.20 11.60 0 100 

0.0233 14.60 28.80 0 100 

0.0310 17.00 19.60 0 100 

0.0446 19.80 16.20 0 100 

0.0618 40.00 94.60 0 100 

0.2248 285.80 1657.80 0 100 

0.5427 602.80 2569.60 0 100 

0.3942 339.80 1620.80 0 100 

1.9606 825.80 3918.00 0 100 

0.0082 4.20 7.00 0 100 

0.0073 4.25 5.25 0 100 

0.0194 21.60 69.40 0 100 

0.0379 95.60 417.60 0 100 

0.1383 372.00 1645.60 0 100 

0.0678 125.20 553.20 0 100 

0.6030 831.80 4209.00 0 100 

1.2976 823.00 5939.40 0 100 

1.7234 1022.00 5384.00 0 100 

2.5580 17408.40 65716.80 0 100 

11.0653 3167.60 24217.00 0 100 

0.0060 5.40 3.60 0 100 

0.0137 20.20 70.80 0 100 

0.0220 21.80 78.60 0 100 

0.0285 53.00 252.60 0 100 

0.1021 236.20 1140.60 0 100 

0.2835 301.00 2065.80 0 100 

0.9480 965.40 4795.80 0 100 

1.3085 845.00 7471.80 0 100 

3.3051 1675.20 10064.80 0 100 

2255.5929 31126.80 173781.40 1.01 80 

1950.8311 8133.20 96718.60 0 100 

http://dx.doi.org/10.13039/501100003329
http://dx.doi.org/10.13039/501100003329
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Table A10 

Results of MSTN–MTZ and MSTN–SEC for 3D instances with � 1 norm and rectangu- 

lar neighborhoods. 

MTZ SEC 

r n CPU #Nodes GAP %Solved CPU #SECs #Nodes GAP %Solved 

1 5 0.0045 0.00 0 100 0.0033 4.20 0.00 0 100 

6 0.0199 6.80 0 100 0.0077 2.60 1.00 0 100 

7 0.0243 4.60 0 100 0.0133 6.40 0.60 0 100 

8 0.0290 5.80 0 100 0.0172 6.40 0.20 0 100 

9 0.0393 68.20 0 100 0.0211 13.20 10.00 0 100 

10 0.0313 0.00 0 100 0.0251 7.20 0.00 0 100 

11 0.0502 9.40 0 100 0.0317 13.00 11.40 0 100 

12 0.0734 0.60 0 100 0.0619 18.20 23.60 0 100 

13 0.1346 56.20 0 100 0.0859 79.40 162.40 0 100 

14 0.1456 75.00 0 100 0.0920 35.60 57.60 0 100 

15 0.2278 74.00 0 100 0.1386 93.40 228.60 0 100 

20 0.5472 303.40 0 100 0.3229 43.80 72.20 0 100 

2 5 0.0070 0.00 0 100 0.0063 3.40 0.00 0 100 

6 0.0178 8.40 0 100 0.0114 3.00 0.00 0 100 

7 0.0243 4.80 0 100 0.0138 7.60 5.60 0 100 

8 0.0568 13.80 0 100 0.0275 9.00 7.80 0 100 

9 0.0436 109.00 0 100 0.0265 13.00 20.00 0 100 

10 0.0424 1.00 0 100 0.0355 12.00 1.20 0 100 

11 0.0866 79.40 0 100 0.0418 22.60 55.40 0 100 

12 0.1383 124.80 0 100 0.1129 94.60 4 4 4.20 0 100 

13 0.1817 223.40 0 100 0.1414 118.60 393.40 0 100 

14 0.2568 225.00 0 100 0.2107 208.40 573.40 0 100 

15 0.3568 350.60 0 100 0.5568 414.40 1265.40 0 100 

3 5 0.0072 0.00 0 100 0.0047 2.40 0.00 0 100 

6 0.0190 11.80 0 100 0.0093 2.80 0.40 0 100 

7 0.0459 18.60 0 100 0.0195 13.20 26.00 0 100 

8 0.0702 59.00 0 100 0.0301 22.80 79.20 0 100 

9 0.0980 205.60 0 100 0.0467 41.60 137.40 0 100 

10 0.0860 28.60 0 100 0.0567 15.60 26.00 0 100 

11 0.1564 227.00 0 100 0.1056 101.40 555.80 0 100 

12 0.3007 663.20 0 100 0.4866 499.80 2588.40 0 100 

13 0.3899 1567.20 0 100 0.4506 520.60 2378.80 0 100 

14 0.7133 3031.40 0 100 1.4542 1269.40 5288.20 0 100 

15 0.4470 1010.00 0 100 1.0931 678.60 2556.40 0 100 

4 5 0.0083 0.00 0 100 0.0081 5.20 1.40 0 100 

6 0.0275 15.20 0 100 0.0162 4.60 13.40 0 100 

7 0.0399 18.60 0 100 0.0231 13.60 24.60 0 100 

8 0.0739 32.00 0 100 0.0304 15.40 43.60 0 100 

9 0.0823 230.20 0 100 0.0477 35.60 157.00 0 100 

10 0.1263 91.40 0 100 0.1009 150.80 660.80 0 100 

11 0.2241 485.80 0 100 0.1713 164.00 1134.40 0 100 

12 0.2180 213.00 0 100 0.2612 257.80 1517.20 0 100 

13 0.6875 2034.20 0 100 0.7246 628.80 3289.80 0 100 

14 1.2201 4354.80 0 100 1.9160 1214.80 4778.80 0 100 

15 1.0402 2616.20 0 100 1.6548 910.00 2315.60 0 100 

Table A11 

Average results for the decomposition approach for planar instances for � 1 -norm 

and rectangular neighborhoods. 

r n CPU #SEC #BendersCuts #NodesB%B %GAP 0 %GAP %Solved 

1 5 0.0022 1.00 0.60 0.00 1.67 0 100 

6 0.0083 2.60 2.60 2.20 8.64 0 100 

7 0.0141 3.40 5.00 12.40 7.46 0 100 

8 0.0111 1.80 4.40 7.20 7.80 0 100 

9 0.0165 8.00 6.00 25.40 9.33 0 100 

10 0.0334 9.40 19.40 83.20 8.96 0 100 

11 0.0723 32.20 47.60 401.60 19.63 0 100 

12 0.0873 24.80 51.80 416.20 25.25 0 100 

13 0.1843 61.40 104.60 1081.60 36.44 0 100 

14 0.2099 47.00 112.20 1035.80 23.29 0 100 

15 3.0139 325.00 663.00 9696.80 40.27 0 100 

20 14.5891 1295.80 1858.40 44855.00 37.53 0 100 

2 5 0.0156 2.20 5.60 12.20 26.63 0 100 

6 0.0228 4.20 13.40 46.00 24.10 0 100 

7 0.0207 5.20 9.00 27.40 22.27 0 100 

8 0.0472 13.40 35.20 198.60 34.17 0 100 

9 0.0514 15.40 30.60 192.20 21.48 0 100 

10 0.0562 18.80 32.00 239.20 20.67 0 100 

11 0.3067 91.00 184.00 1910.40 30.67 0 100 

12 8.6071 413.00 1409.60 20791.80 51.64 0 100 

13 10.4075 526.80 1709.00 27168.40 45.33 0 100 

14 15.8339 1409.60 2572.20 52010.00 38.77 0 100 

15 > 7200 4089.20 9677.00 190166.60 62.90 5.86 0 

3 5 0.0153 2.40 5.60 13.40 20.63 0 100 

6 0.0126 4.00 5.40 15.40 22.90 0 100 

7 0.0652 17.80 55.80 329.60 44.07 0 100 

8 0.3336 68.80 289.00 2136.20 54.70 0 100 

9 3.4215 272.60 829.80 8834.80 50.00 0 100 

10 639.8128 111.80 40 0.0 0 4172.60 45.38 0 100 

11 5631.1871 1566.20 4282.60 63423.80 58.17 16.83 40 

12 > 7200 1287.80 4083.00 60204.40 67.52 31.36 0 

13 > 7200 1874.20 4292.60 67538.00 67.39 28.09 0 

14 > 7200 3006.60 2987.40 77310.60 81.56 53.91 0 

15 > 7200 2592.20 3354.20 79375.40 71.18 36.70 0 

4 5 0.0109 2.20 4.00 6.40 19.46 0 100 

6 0.0562 15.80 54.80 262.60 34.65 0 100 

7 0.0568 17.80 47.00 292.00 41.84 0 100 

8 0.2792 49.80 248.40 1874.80 43.57 0 100 

9 643.8900 259.80 949.80 10455.60 62.19 0 100 

10 1445.3231 518.80 1791.00 20737.40 65.94 5.47 80 

11 5766.7558 1432.40 4164.40 55404.80 68.46 21.01 20 

12 > 7200 1899.60 4578.40 66754.40 74.97 27.17 0 

13 > 7200 1963.00 3672.20 62163.60 75.84 39.24 0 

14 > 7200 3333.40 3249.80 75414.40 87.12 70.36 0 

15 > 7200 3300.60 3328.60 74878.60 88.81 51.00 0 
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Table A12 

Average results for the decomposition approach for 3D instances for � 1 -norm and 

rectangular neighborhoods. 

r n CPU #SEC #BendersCuts #NodesB%B %GAP 0 %GAP %Solved 

1 5 0.0010 0.60 0.20 0.00 0.13 0 100 

6 0.0054 1.60 2.00 2.20 6.70 0 100 

7 0.0073 1.60 2.60 2.00 5.82 0 100 

8 0.0078 1.60 2.60 3.40 2.47 0 100 

9 0.0101 2.80 4.20 10.00 2.25 0 100 

10 0.0084 4.00 3.00 4.60 2.03 0 100 

11 0.0166 6.80 6.20 18.80 2.95 0 100 

12 0.0323 11.60 19.60 109.60 4.92 0 100 

13 0.0560 15.00 32.00 158.80 8.43 0 100 

14 0.0354 15.00 18.40 72.80 3.69 0 100 

15 0.0962 35.40 39.00 347.40 9.93 0 100 

20 0.2478 52.00 72.80 700.60 7.35 0 100 

2 5 0.0048 1.40 1.40 0.80 3.64 0 100 

6 0.0111 2.00 5.00 6.20 5.25 0 100 

7 0.0123 3.00 3.40 6.80 14.15 0 100 

8 0.0227 5.00 10.80 28.60 11.01 0 100 

9 0.0232 6.80 14.20 51.80 7.40 0 100 

10 0.0149 5.40 5.60 17.60 4.77 0 100 

11 0.0434 11.80 27.60 122.60 10.46 0 100 

12 0.2303 24.80 119.80 1071.40 9.04 0 100 

13 0.5307 63.20 232.80 2001.20 14.03 0 100 

14 0.3709 68.40 147.40 1588.80 14.76 0 100 

15 1.8171 586.60 867.80 15792.20 22.30 0 100 

3 5 0.0034 1.40 0.80 0.00 6.90 0 100 

6 0.0042 1.00 1.40 0.00 2.05 0 100 

7 0.0275 6.83 18.50 69.50 19.52 0 100 

8 0.0551 15.00 41.60 224.60 18.47 0 100 

9 0.1651 35.60 140.60 811.60 25.35 0 100 

10 0.0668 22.00 44.80 292.20 10.55 0 100 

11 1.3428 123.40 430.20 4317.40 19.60 0 100 

12 12.1502 308.60 1689.80 21923.80 27.30 0 100 

13 76.6432 378.20 1755.20 23285.20 20.49 0 100 

14 5833.2085 1166.60 4502.80 60496.80 30.83 7.53 20 

15 4246.5358 1197.00 3429.20 55744.20 25.23 1.14 60 

4 5 0.0083 2.00 2.40 1.60 10.39 0 100 

6 0.0244 4.40 15.00 38.20 16.50 0 100 

7 0.0394 7.00 31.75 111.00 27.56 0 100 

8 0.0491 11.00 35.40 174.80 14.57 0 100 

9 0.1451 36.00 107.80 682.60 20.13 0 100 

10 0.4102 104.00 260.00 2422.60 26.68 0 100 

11 4.1641 241.80 770.20 8311.40 30.48 0 100 

12 8.8121 171.00 1087.60 10670.40 23.66 0 100 

13 4321.3553 715.20 3512.20 44623.80 30.02 3.89 40 

14 > 7200 1535.00 4640.60 58166.00 42.04 17.11 0 

15 > 7200 2041.60 4399.80 71291.40 35.42 10.54 0 

Table A13 

Average results for the mathheuristic for � 1 -norm and rectangular neighborhoods. 

2-dimensional instances 3-dimensional instances 

r n CPU %Dev CPU %Dev 

1 5 0.0501 0.0 0 0 0 0.0656 0.0 0 0 0 

6 0.0933 0.0 0 0 0 0.1074 0.0 0 0 0 

7 0.1351 0.0 0 0 0 0.1603 0.0 0 0 0 

8 0.3132 0.0 0 0 0 0.7855 0.0037 

9 0.2488 0.0 0 0 0 1.3627 0.0538 

10 0.3393 0.1246 0.5364 0.0 0 0 0 

11 1.4827 0.0446 0.5580 0.0 0 0 0 

12 2.4810 0.0268 1.1630 0.0987 

13 1.2527 0.0 0 0 0 0.8056 0.1088 

14 1.4183 0.1192 0.9533 0.0671 

15 2.8917 0.0423 1.7673 0.1199 

20 2.4 84 9 0.3632 2.7856 0.0488 

2 5 0.0556 0.0 0 0 0 0.0579 0.0 0 0 0 

6 0.0963 0.0 0 0 0 0.1093 0.0 0 0 0 

7 0.1300 0.1610 0.1604 0.0 0 0 0 

8 0.1994 0.0367 0.2102 0.0 0 0 0 

9 1.1819 0.0 0 0 0 0.3124 0.0394 

10 1.6446 0.2628 0.4307 0.0042 

11 1.6624 0.2226 0.5281 0.0809 

12 0.6514 0.2499 0.7326 0.1795 

13 0.7195 0.1416 1.4565 0.2698 

14 0.8685 0.5442 0.9676 0.2398 

15 1.5918 0.5998 1.7437 0.2687 

3 5 0.0694 0.0 0 0 0 0.3834 0.0 0 0 0 

6 0.0994 0.0 0 0 0 0.1085 0.0 0 0 0 

7 0.1389 0.0 0 0 0 0.4271 0.0 0 0 0 

8 0.2166 0.0 0 0 0 0.2414 0.0 0 0 0 

9 0.3109 0.7205 0.3182 0.0307 

10 0.3593 0.2427 0.4385 0.3942 

11 0.5479 0.5686 0.7874 0.1480 

12 0.7328 0.5994 0.9501 1.0149 

13 0.7832 0.6054 0.9950 0.6702 

14 1.0458 0.7584 1.3970 0.5432 

15 1.4019 0.5245 1.4386 0.2215 

4 5 0.0511 0.0 0 0 0 0.0592 0.0 0 0 0 

6 0.0999 0.0 0 0 0 0.1109 0.0 0 0 0 

7 0.1361 0.0745 0.1561 0.0 0 0 0 

8 0.2094 0.0 0 0 0 0.9138 0.0 0 0 0 

9 0.3650 0.9745 1.1039 0.3631 

10 0.4236 0.8142 0.4621 0.3154 

11 0.6061 0.1490 0.6606 0.2416 

12 0.6831 1.3134 0.8185 0.6113 

13 0.7899 1.1115 1.2024 0.9530 

14 1.0270 1.6971 1.2350 0.9403 

15 1.3304 1.0020 1.4597 0.9309 
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Table A14 

Average results for the mathheuristic for large instances in the 3D case for � 1 -norms 

and rectangular neighborhoods. 

r | V | CPU %Dev LB %Dev UB %MST 

1 20 3.2718 17.8734 1.7621 0 

25 6.6355 22.6283 1.7051 40 

30 9.3052 22.4836 1.8052 0 

35 15.8989 23.8553 1.6075 20 

40 20.5503 23.2102 1.6839 0 

45 31.5300 32.0624 1.1210 20 

50 44.3083 34.8768 1.6471 0 

60 78.6957 32.8190 1.4473 0 

70 113.8717 35.3224 1.6023 20 

80 74.2517 39.5795 1.6678 40 

90 102.9631 41.3705 0.3986 80 

100 186.1598 43.7887 2.3123 20 

2 20 3.7265 53.1616 3.9797 0 

25 5.2124 66.5402 5.0290 0 

30 9.9285 68.6913 5.5394 0 

35 16.9959 79.0108 6.9387 0 

40 25.0273 78.9813 5.8777 0 

45 38.2699 77.7870 5.3047 0 

50 44.5787 83.0475 6.5810 0 

60 92.1195 88.8487 7.2299 0 

70 138.7432 91.0040 5.8910 0 

80 88.7842 93.7916 5.2288 0 

90 151.0290 96.1807 4.7431 20 

100 213.5375 97.4415 8.0734 0 

3 20 6.4307 83.4390 10.3132 0 

25 6.9695 89.8750 5.9345 0 

30 9.7627 92.5665 7.8432 0 

35 17.2009 96.1816 9.4858 0 

40 29.1791 96.4066 9.6613 0 

45 34.8684 97.6215 5.8366 0 

50 53.4088 98.8003 10.9474 0 

60 84.6073 99.9880 12.8502 0 

70 138.2981 99.5556 11.6571 0 

80 91.4367 99.5121 15.1611 0 

90 138.3870 99.9182 17.7213 0 

100 195.6471 99.9487 19.1954 0 

4 20 4.1700 94.9978 11.8213 0 

25 8.0141 98.3129 12.0262 0 

30 12.6966 99.4911 13.6889 0 

35 19.1026 100 18.0065 0 

40 24.6893 99.6579 14.8827 0 

45 34.4745 100 19.3029 0 

50 43.2740 100 18.7120 0 

60 80.2812 100 29.2938 0 

70 117.1115 100 32.2512 0 

80 87.2616 100 27.3434 0 

90 128.2288 100 34.2494 0 

100 160.3780 100 37.2976 0 

Table A15 

Average results for the mathheuristic for large instances in the 3D case for � 1 -norms 

and rectangular neighborhoods. 

r | V | CPU %Dev LB %Dev UB %MST 

1 20 3.9244 4.2397 0.2847 40 

25 7.3535 6.3234 0.2888 40 

30 11.1005 5.7059 0.0560 80 

35 15.1186 5.0536 0.1201 60 

40 23.9661 6.0740 0.2721 40 

45 34.8230 8.0205 0.4048 40 

50 50.1349 9.3624 0.4327 60 

60 84.6652 7.8607 0.3417 60 

70 146.8459 9.7645 0.3315 40 

80 87.6570 9.5274 0.1653 40 

90 119.0164 9.0978 0.0985 80 

100 184.5800 12.0535 16.0131 40 

2 20 3.3065 17.0344 1.2530 20 

25 7.7484 25.0740 2.3043 20 

30 12.6865 20.3597 2.1098 20 

35 18.7399 24.3101 1.0825 20 

40 28.0525 26.5215 2.1389 20 

45 41.1231 28.8200 2.9969 0 

50 56.9099 32.7247 0.7609 40 

60 92.0581 35.2961 1.5897 20 

70 151.3542 41.4838 2.4979 20 

80 108.1210 43.5643 2.6506 0 

90 159.6481 45.0713 2.4967 20 

100 209.1270 4 9.694 8 1.9244 0 

3 20 4.7462 38.9261 5.1346 0 

25 8.0449 50.8300 5.8753 0 

30 12.8401 45.0230 5.4193 0 

35 19.4514 51.1207 4.2940 0 

40 30.7106 54.7966 3.7982 0 

45 50.0257 59.1045 5.6015 0 

50 70.5336 68.0738 3.7970 20 

60 110.6772 72.5850 4.1774 0 

70 155.4668 79.3740 3.9421 0 

80 113.2362 80.4278 4.2382 0 

90 157.1447 81.1355 3.5754 0 

100 234.6815 85.4162 5.2324 0 

4 20 4.6605 62.3675 7.4389 0 

25 7.6516 72.6303 5.2245 0 

30 12.9930 72.3479 4.8505 0 

35 19.5038 78.3774 6.3135 0 

40 28.6141 81.5346 7.7731 0 

45 40.1882 87.0697 6.8866 0 

50 54.2520 90.8204 7.4710 0 

60 113.4294 95.4042 8.5400 0 

70 189.2968 96.9925 7.1464 0 

80 135.5644 97.7376 7.3322 0 

90 204.3473 97.9449 8.9383 0 

100 219.4976 98.2737 7.5345 0 
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